A New Godunov Scheme for MHD, with Application to the MRI in disks
نویسندگان
چکیده
We describe a new numerical scheme for MHD which combines a higher order Godunov method (PPM) with Constrained Transport. The results from a selection of multidimensional test problems are presented. The complete test suite used to validate the method, as well as implementations of the algorithm in both F90 and C, are available from the web. A fully three-dimensional version of the algorithm has been developed, and is being applied to a variety of astrophysical problems including the decay of supersonic MHD turbulence, the nonlinear evolution of the MHD Rayleigh-Taylor instability, and the saturation of the magnetorotational instability in the shearing box. Our new simulations of the MRI represent the first time that a higher-order Godunov scheme has been applied to this problem, providing a quantitative check on the accuracy of previous results computed with ZEUS; the latter are found to be reliable.
منابع مشابه
Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملAnisotropic diffusion in mesh-free numerical magnetohydrodynamics
We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer–Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent ‘eddy diffusion’. W...
متن کاملA High Order Godunov Scheme with Constrained Transport and Adaptive Mesh Refinement for Astrophysical MHD
Aims. In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. Methods. The algorithm is based on a previous work in which the MUSCL–Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss ...
متن کاملMHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method
In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...
متن کاملEntropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005